APPROACH
We followed a two-step process:
- Impact analysis: The Tredence team put studied the inherent nature of sub-optimal ?eet transfers and understand its drivers. We were able to infer that 40% of the transfers occurred despite inventory availability, which was driven by anticipation of demand. However, about 35% of the transfers did not result in any rental in the short term, indicating inef?cient demand analysis.
- Solution development: We put together a demand forecast solution – a hybrid time series model that helped forecast short-term demand.
KEY BENEFITS
- The forecast model was scalable to predict demand at different levels, reducing suboptimal ?eet transfers
- It enabled optimized inventory planning for district manager, leading to better ?eet utilization
RESULTS
The impact of the solution was two-fold
- 35% reduction in sub-optimal transfers during the ?rst quarter of implementation
- Reduced stock out days through better anticipation of future demand
Speak to Our Experts
Drop us a note through this form and we'll get back to you as soon as we can.